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Experiments on and calculation methods for flow in straight non-circular ducts 
involving turbulence-driven secondary motion are reviewed. The origin of the 
secondary motion and the shortcomings of existing calculation methods are discussed. 
A more refined model is introduced, in which algebraic expressions are derived for 
the Reynolds stresses in the momentum equations for the secondary motion by 
simplifying the modelled Reynolds-stress equations of Launder, Reece & Rodi (1975), 
while a simple eddy-viscosity model is used for the shear stresses in the axial 
momentum equation. The kinetic energy k and the dissipation rate e of the turbulent 
motion which appear in the algebraic and the eddy-viscosity expressions are 
determined from transport equations. The resulting set of equations is solved with 
a forward-marching numerical procedure for three-dimensional shear layers. The 
model, as well as a version proposed by Naot & Rodi (1982), is tested by application 
to developing flow in a square duct and to developed flow in a partially roughened 
rectangular duct investigated experimentally by Hinze (1973). I n  both cases, the 
main features of the mean-flow and the turbulence quantities are simulated realis- 
tically by both models, but the present model underpredicts the secondary velocity 
while the Naot-Rodi model tends to overpredict it. 

1. Introduction 
Turbulent flows in ducts or passages of non-circular cross-section are often 

encountered in engineering practice. Examples are flows in heat exchangers, ventil- 
ation and air-conditioning systems, nuclear reactors, turbomachinery , open channels, 
canals and rivers. The flow in such ducts is accompanied by secondary motions in 
the plane perpendicular to  the streamwise direction, and this secondary motion can 
be caused by two different mechanisms. In  curved ducts, where centrifugal forces act 
a t  right angles to the main flow direction, this motion is pressure-induced and is said 
to be of Prandtl’s first kind. This kind also exists in curved circular ducts and for 
laminar flow, and the secondary velocities can be quite large, say of the order of 20-30 yo 
of the bulk streamwise velocity. Secondary motion of Prandtl’s second kind is 
encountered in non-circular straight ducts, and, since, in contrast with laminar flow, 
this secondary motion is present also under fully developed conditions, i t  is caused 
by turbulence. The present paper is concerned with turbulence-driven secondary 
motion, which has been observed in non-circular ducts and open channels. Although 
the secondary velocity is only of the order of 2-3 % of the streamwise bulk velocity, 
this motion can have important consequences. By transporting high-momentum fluid 
towards the corners, it  causes a bulging of the velocity contours towards the corners. 
I n  open-channel flows, this secondary motion moves fluid with relatively low 
streamwise momentum towards the centre portion of the channel and causes the 
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observed depression of the velocity maximum below the surface. Furthermore, the 
secondary motion produces an increase of the wall shear stress towards corners, an 
effect which is of great importance for sediment-transport and erosion problems. 
Similarly, the heat transfer at duct walls is influenced significantly by the secondary 
motions, and these can also significantly increase the lateral spreading of any tracer 
discharged into a channel. For these reasons i t  is important to  understand and be 
able to accurately predict secondary-flow phenomena in developing flow situations 
and in the asymptotic developed state. The present paper introduces a general 
three-dimensional model for simulating these flow situations. 

2. Previous work and present contribution 
2.1. Experiments 

A considerable number of experimental investigations have been carried out on 
turbulent flow in straight non-circular ducts. These investigations can be classified 
broadly into two categories : (i) those concerned with the influence of duct geometry 
on friction laws and on laws for the longitudinal velocity distribution; and (ii) those 
concerned with the secondary motion, its origin and its effect on various global and 
local flow properties. I n  this paper, the findings of the second category are of prime 
interest and will be discussed in greater detail below. The earlier measurements of 
the first category indicated that the friction factor for fully developed turbulent duct 
flows could be closely correlated by the Blasius formula for circular pipes when the 
Reynolds number was based on the hydraulic diameter. More extensive later studies 
have shown, however, that  there is no unique, geometry-independent relationship 
between the friction factor and the Reynolds number based on the hydraulic 
diameter. Hence consideration of the details of the duct geometry appears to be 
important. The experimental investigations of the first category have also shown that, 
except in immediate corner regions (xl < 30 and x,' < 30), the usual inner logarithmic 
law of the wall is valid, with scatter in the involved constants only slightly larger 
than for different circular pipe-flow experiments. I n  contrast to such flows, however, 
no universal defect laws were found for the outer region, except in elliptic ducts. 

Experiments on detailed flow development, including the secondary motion, will 
now be discussed. Nikuradse (1930) was perhaps the first one to  observe the secondary 
motion in non-circular ducts by flow-visualization studies. These studies were 
conducted in order to explain the cause of the bulging of the axial-velocity contours 
towards the corner which he had observed in his earlier experiments. 

However, it took another 30 years before Hoagland (1960) reported the first actual 
measurements of the secondary motion. Subsequently, such measurements have been 
reported by Brundett & Baines (1964), Gessner (1964, also presented in Gessner & 
Jones 1965), Launder & Ying (1972), Melling & Whitelaw (1976), Po (1975), Lund 
(1977) and Gessner & Emery (1980) in square ducts, Gessner (1964) and Tracy (1965) 
in rectangular ducts, and by Aly, Trupp & Gerrard (1978) in a triangular duct. The 
findings of these measurements will now be summarized and evaluated. 

Approach to developed flow 
Details of some experimental results for developing duct flow will be presented 

below together with the calculations. Here the question is posed whether the 
individual experiments were carried out to sufficiently large downstream distances 
for fully developed flow to prevail. Unfortunately this question cannot be answered 
with certainty in most cases. Melling & Whitelaw (1976) presented measurements of 
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the developing flow in a square duct a t  various cross-sections up to 36.80, 
(0, = hydraulic diameter), a t  which station the flow was far from fully developed. 
Various aspects of developing square-duct flow have been investigated in comple- 
mentary studies by Po (1975), Lund (1977) and Gessner (see Gessner & Emery 1980), 
all using the same experimental facility. These measurements were conducted a t  a 
number of cross-sections down to a streamwise location of 840,. The streamwise 
velocity a t  the centreline, relative to the bulk velocity, increased monotonically down 
to about 40D,, where i t  reached a maximum. Further downstream, it decreased until 
70D,, beyond which it was practically constant at 70% below the peak value. 
Gessner’s measured secondary velocity increased between 400, and 840, by about 
10 yo along the wall bisector and by 50 yo along the corner bisector. Po’s measurements 
of the Reynolds stresses showed a decrease of 1&20 yo between these two cross-sections. 
Since no measurements are reported between 400, and 840, and beyond 84D,, no 
definite conclusions can be drawn as to whether the flow was fully developed at 840,. 
In  a recent survey on the development of turbulent pipe flow, Klein (1981) found 
that the length required for full flow development may exceed 140 pipe diameters. 
However, for certain inlet conditions it was found to be as low as 70 diameters. The 
development length for flow in non-circular ducts must be expected to be of the same 
order of magnitude if not larger because the secondary motion may take longer to 
reach a developed state. It is interesting to note, however, that the centreline velocity 
in many of the data reviewed by Klein attained a peak value a t  about 40 diameters, 
which compares well with the peak a t  400, measured by Gessner in the square duct. 

Brundett & Baines’ (1964) measurements at 2600, must be assumed to be for 
developed flow, while in the duct of Launder & Ying (1972) the flow was probably not 
fully developed a t  the measurement cross-section x, /D,  = 69, as will be discussed 
further below. 

Results for approximately developed flow 
Velocity contours of various experimenters measured a t  the furthest downstream 

station are compared in figure 1 .  These contours show the typical bulging towards 
the corner which is caused by the secondary motion. The contours of Launder & Ying 
show considerably less bulging in the centre portion of the duct than do the other 
measurements. This is consistent with the smaller secondary motion measured by 
these authors (see figure 3), so that  the buildup of the secondary motion was probably 
not completed by 690, and the flow there was not fully developed. Launder (private 
communication 1982) agrees with this conclusion. Some of the differences between 
the remaining experimental results are due to differences in the Reynolds number. 
Figure 2 shows that the ratio of maximum (centreline) velocity to  bulk velocity U ,  
decreases somewhat with increasing Reynolds number, and this may explain partly 
the differences in the contours of Brundett & Baines on the one hand and Po and Lund 
on the other. However, the latter two authors conducted their experiments in the 
same apparatus; the differences between their results are therefore an indication of 
the experimental uncertainty. It should also be mentioned that the contours 1.10, 
and to a lesser extent 1.05, in figure 1,  magnify small differences in the velocity 
distribution because of the small gradients of the velocity profiles in the centre 
portion. 

While there was no clear variation of the ratio of the centreline velocity to bulk 
velocity with Reynolds number beyond Re = 120000, the friction velocity relative 
to the bulk velocity, whose Reynolds-number dependence is also plotted in figure 2, 
was found to decrease continuously with increasing Re in the whole range investigated. 
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FIGURE 1. Measured contours of primary velocity: -+-+-, Po (1975); -.-.-, Lund (1977): 
-- x - x -, Launder & Ying (1972) ; -n-n-, Brundett & Baines (1964). 
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FIGUEE 2. Influence of Reynolds number on friction and axial centreline velocities. Data: x , Lund 
(1977); A, Brundett & Baines (1964); 0, Po (1975); +, Launder & Ying (1972); 0 ,  Gessner (in 
Gessner & Emery 1980) ; -, present predictions. 
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FIGURE 3. Secondary velocities along wall and corner bisectors. Data: A, Brundett & Baines (1964) ; 
+, Launder & Ying (1972); x , Gessner (in Gessner & Emery 1980). Predictions: -.-, present 
model; ---, Naot & Rodi's (1982) model. 

Launder & Ying (1972) have argued that the effect of Reynolds number on the 
secondary motion can be reduced if not eliminated by normalizing the secondary 
velocities with the friction velocity rather than with the bulk velocity. Figure 3 shows 
secondary velocities along the wall bisector and corner bisector measured a t  the 
most-downstream station in various experiments. 

Normalizing the secondary velocities with the friction velocity can be seen to bring 
the level of the relative secondary velocity measured by various experimenters to a 
reasonable accord. The level of Launder & Ying's secondary motion is markedly lower 
than that of other experiments, indicating that the secondary motion was still 
building up. The considerable scatter of the data shown in figure 3 also points to the 
fact that  the relatively small secondary velocities are very difficult to measure 
accurately. The scatter gives a realistic indication of the uncertainties involved in 
the secondary velocity data. These uncertainties appear to be of the same order as 
differences that may arise due to different Reynolds numbers. 

Origin of the secondary motion 
The measurements reviewed above have shown the magnitudes and effects of the 

secondary motion, but they give no indication as to its origin. Prandtl (1926) was 
the first to suggest that the secondary motion in non-circular straight ducts was 
caused by the turbulence field, but it was not until Einstein & Li (1958) that a rigorous 
analysis was carried out to show that i t  is the gradients of Reynolds stresses that 
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give rise to the secondary motion. I n  order to examine experimentally the origin of 
the secondary motion, Brundett & Baines (1964) measured all three velocity and all 
six Reynolds-stress components in a fully developed square-duct flow and used these 
measurements to examine the magnitude of the terms in the streamwise vorticity 
equation. For a steady incompressible constant-property flow, the equation for the 
streamwise vorticity a, has the following exact form (in the coordinate system given 
in figure 4): 

--- 
A3 A4 A ,  

where the components of the vorticity vector are 

au, au, au, au, au, au, 
1 -  ax, ax, 2 -  ax3 axl j 3  ax, axL., 

a a=---  

The terms A ,  represent the convection of the streamwise vorticity by the mean 
motion, and the terms A ,  the vortex stretching and tilting by the mean-velocity 
gradients; the latter form the source of secondary motion of Prandtl’s first kind. The 
terms A,, A ,  and A ,  express the influence of the turbulent stresses on the production 
or destruction of streamwise vorticity, and A ,  the damping by viscosity. Brundett 
& Baines considered only fully developed flow, in which case all gradients with respect 
to x1 (streamwise direction) are zero, and (1)  reduces to 

U , A +  an u3-2 aa = ~ a 2  (,-,)-(&-&)?,u,,u(%+~). (3) ax, ax, ax,ax3 ax; ax; ---- 
A1 A4 

They then evaluated each term in (3) from their measurements as well as from those 
of Hoagland (1960), using simple finite-difference relations to determine the gradients 
from the 8 x 8 measurement grid. This evaluation yielded that, of the two turbulent- 
stress terms, only A,  was significant and was balanced by the convection and 
viscous-damping terms A,  and A,. Brundett & Baines then concluded that streamwise 
vorticity was produced by A,  and then convected by A ,  to regions where the vorticity 
was destroyed by the viscous-damping term A,. Perkins (1970) pointed out that  the 
hot-wire procedure of Brundett & Baines involved rotating a single-wire sensor to eight 
different orientations a t  each point in the flow, so that the turbulent stress terms u2 u3 
and ui-u; were each obtained from 4 measured r.m.s. voltages, and that an error 
of & 1 % in each r.m.s. voltage could lead to an error of 100 yo in the shear stress 
u2 u,. Further, the differentiation from 8 x 8 measurement points introduced additional 
inaccuracies so that  the results of Brundett & Baines are not very reliable. 

Gessner & <Jones (1965) used an X-array hot-wire probe which enabled the Reynolds 

_ -  
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FIGURE 4. Coordinate system for rectangular-channel flow. 

stresses to be measured more accurately. They derived a momentum equation for the 
velocity component along a secondary-flow streamline and measured the terms in this 
equation a t  points located on this streamline as well as the normal gradients by 
moving the hot wire normally to the streamline a t  each point. This way, the individual 
terms in the momentum equation could be measured quite accurately, and the 
evaluation of the results showed that the convection and viscous terms were both 
two orders of magnitude smaller than the turbulent-stress terms (the viscous term 
was significant only near the corner, where its magnitude reached about half that 
of the convective term). The turbulent normal and shear-stress terms, which lead 
to the terms A,  and A,  in the vorticity equation (3) when the latter is derived from 
the momentum equations, emerged to be of the same order of magnitude, and their 
sum was seen to be balanced by the pressure-gradient term. The last term could not 
be measured but was determined from the difference of the other terms. The pressure 
term is, of course, not a source of vorticity, because it disappears when the vorticity 
equation (3) is derived from the momentum equations. The findings of Gessner & 
Jones contradict those of Brundett & Baines in so far as the former found the viscous 
terms to be negligible and the secondary motion to be produced by the difference 
between turbulent stress terms. The fact that, in contrast with Brundett & Baines’ 
experiments, Gessner & Jones’ measurements were not in fully developed flow does 
not explain these severe differences. Rather they are due to the inaccurate method 
of Brundett & Baines in measuring and differentiating the turbulent stresses. 

Perkins (1  970) investigated experimentally the mechanism for generating stream- 
wise vorticity in turbulent corner flow developing a t  approximately constant 
pressure. This flow situation is virtually the same as that in corners of developing 
duct flow and he found that the individual Reynolds stresses indeed behaved very 
much the same as in the square-duct flow studied by Gessner & Jones. Considering 
the streamwise vorticity balance in ( l ) ,  he found that all the terms involving 
streamwise gradients were negligible except U, aQ,/ax,, which varied erratically. The 
turbulent normal and shear-stress terms came out to be of the same order of 
magnitude and of opposite sign, confirming Gessner & Jones’ findings. Perkins argued 
that two different mechanisms contribute to the generation of the secondary shear 
stress u2u3. The first mechanism is associated with the gradients of the secondary 

~ 
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velocities, and its contributions to u2 us can be represented in terms of an isotropic 
eddy viscosity. The second mechanism is associated with the distortion of the primary 
stress field in the corner and is therefore associated with the prlinary velocity 
gradients. Although the individual contributions to  the generation of u2 us could not 
be determined from the experiment, Perkins considered them to be of equal 
magnitude. It will be shown below that i t  is indeed important to represent both 
processes in a mathematical model. 

Contrary to all previous beliefs, Gessner (1973) claimed that the anisotropy of the 
turbulent normal stresses do not play a major role in the generation of the secondary 
motion. Since all the terms in the streamwise vorticity equation (1)  are a t  least an 
order of magnitude smaller than the terms in the equations for the other vorticity 
components (involving gradients of the primary velocity which are much larger than 
those of the secondary velocities), he argued that these equations should be examined 
instead of the 0, equation in order to  explain the origin of the secondary motion. He 
evaluated the terms in a transformed equation for the vorticity along the corner 
bisector, using his experimental results obtained specifically for this purpose. 
Based on these data, he argued that the conversion of mean-flow vorticity to 
turbulent vorticity by the transverse gradients of the primary shear stresses 
occurring in the corner region could only be balanced by convection of mean-flow 
vorticity by secondary motions into this region. Thus he inferred that the secondary 
motion is due to transverse gradients of the primary shear stresses in the corner 
region. He reached similar conclusions from energy considerations. These findings 
are certainly not inconsistent with those of others, but they do not explain the 
generation of the secondary motion. This is directly associated with the streamwise 
vorticity a,, and only equation ( 1 )  or (3) for this quantity can show how this is 
generated; and, since the turbulent normal and shear stresses in the cross-sectional 
plane appear prominently in this equation, they do play an important role in the 
vorticity generation. 

The experimental findings on the generation of secondary motion in non-circular 
straight ducts may be summarized as follows. I n  the 0, equation ( 1 )  or (3) ,  the 
turbulent-stress terms A, and A, are the dominant ones, being of opposite sign and 
much larger than the convection terms A,. The viscous terms A ,  are negligible except 
very close to the corner. Hence the difference between A, and A,  is of the same order 
of magnitude as the convection terms, and it is this difference between these relatively 
large terms that drives the secondary motion. As a consequence, both terms A,  and 
A,  must be modelled accurately in a mathematical simulation in order to describe 
realistically the secondary flow. 

- 

__ 

2.2. Previous calculations 
The first calculation of secondary flow in straight non-circular ducts was carried out 
by Launder & Ying (1973). These authors recognized that a model using an isotropic 
eddy viscosity for calculating the turbulent stresses in the streamwise vorticity 
equation ( 1 )  does not produce any secondary motion a t  all and that more refined 
modelling of these stresses is required. Accordingly they derived a model for the 
stresses 3 - and by simplifying the transport equations for these stresses 
given in model form by Hanjalii: & Launder (1972). From these differential equations, 
algebraic expressions for the above stresses were obtained by neglecting the convection 
and diffusion terms (assumption of local equilibrium) and by further neglecting all 
secondary velocity gradients. The primary shear stresses and were calcu- 
lated from a standard eddy-viscosity model. The turbulent kinetic energy k appearing 



Turbulence-driven secondary motion in non-circular ducts 197 

in the stress relations was obtained by solving a transport equation for k, and the 
distribution of the length-scale L was determined from the algebraic geometrical 
formula of Buleev (1963). This algebraic stress model denoted LY has been used 
(sometimes with slight modifications) by a number of other authors in calculating 
a fairly wide range of straight duct flows. Tatchell (1975) replaced the algebraic 
length-scale formula by a transport equation for the dissipation rate e ( L  K I%$/€) .  This 
model represents a generalization of the LY -model and has been favoured especially 
in calculations of the flow in channels with complex geometrical cross-sections. 
Ramachandra (1979) and Gosman & Rapley (1980) used such a method to calculate, 
with a fair degree of success, fully developed flow in square ducts, triangular ducts 
and ducts with rod-bundle geometries. Gessner & Emery (1980) have also employed 
modified versions of the LY-model in calculating developing and fully developed 
rectangular channel flows. 

I n  all the applications of the LY-model and its modifications, roughly the correct 
level of secondary motion has been obtained. At first, this is somewhat surprising in 
view of the finding of Kacker (1973) that the LY-model predicts the separation 
between the two normal stresses (2--g)/V which drives the secondary motion, to 
be too small by a factor of roughly 10. The algebraic stress relations of LY read 

ui-u; = c ' -  "- 6 U , u , = ~ ! & y  ax, = cf -  :(= u u -+u aul ax, =;:j u - . (4) 
_ _  

In  the parent stress-equation model, Hanjalid & Launder (1972) recommended a value 
for the empirical coefficient of c' = 0.067. Apparently this coefficient produced too 
large a secondary motion, and hence LY adopted the smaller value of c' = 0.0185 in 
their secondary-flow calculations. Even the higher value of c' = 0.067 underpredicts 
the separation between the normal stresses 2 and 3 by a factor of 2-3. This is due 
to the fact that Hanjalic & Launder took no account in their model of the effects 
of wall proximity on the individual stresses which damp the fluctuations normal to 
the wall and enhance the ones parallel to the wall. The fact that the correct level of 
secondary motion is predicted by the LY -model even though the driving term u! - ui 
is too small by a factor of 10 is due to the neglect of secondary velocity gradients 
in the algebraic stress model. As was discussed already, Perkins (1970) pointed out 
that the secondary velocity ~ gradients contribute significantly to the generation of the 
secondary shear stress u2 u,. When this is neglected, the sink term A,  in the vorticity 
equation ( 1 )  is reduced significantly, and, since the secondary motion is governed by 
a subtle balance between A,  and A,, the driving term A,  must also be reduced to 
unrealistically small values. One may therefore conclude that the LY -model produces 
the correct secondary motion for the wrong reason. As will be shown in $4.7, the 
contribution of the secondary velocity gradients to the shear stress u2 u,, neglected 
in the LY-model, is in reality larger than the contribution by the primary velocity 
gradients over much of the flow domain in a fully developed square-duct flow. 

Launder, Reece & I-todi (1975) proposed a Reynolds-stress-equation model which 
accounts for near-wall effects on the turbulent fluctuations by a special wall-proximity 
correction to the pressure-strain model. This model yields a separation between the 
normal stresses 2 and 3 in agreement with experiments. Reece (1976) applied this 
Reynolds-stress-equation model to calculate developing flow in square ducts. He did 
not make the local equilibrium assumption but solved the differential transport 
equations for all six Reynolds stresses. The use of the Launder et al. pressurestrain 
model means that the coefficient c' in (4) is effectively more than 10 times as large 
as in the LY-model. Reece did not specifically mention whether he retained the 

_ _  
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secondary velocity gradients in his model, but i t  seems likely that some account of 
these gradients was taken because otherwise a far too large secondary motion would 
have resulted. It may well have been that the secondary velocity gradients were 
accounted for approximately by an eddy-viscosity expression built into the computer 
program used by Reece similar to the procedure adopted by Naot & Rodi (1982) 
described below. Reece compared the calculated distributions of the three velocity 
components and five Reynolds stresses in developing square-duct flow with the 
measurements of Melling & Whitelaw (1976) and obtained good agreement. 

Naot, Shavit & Wolfstein (1  974) developed a Reynolds-stress-equation model 
similar to that of Launder et al. The main differences can be found in the empirical 
constants employed and in the fact that  Naot et al. prescribed the lengthscale from 
geometrical considerations while Launder et al. calculated it by solving an equation 
for the dissipation rate E .  Naot et al. applied their model to fully developed square- 
duct flow. They did not neglect the secondary velocity gradients, but owing to the 
strong coupling of the differential equations of the mean flow and the Reynolds 
stresses they could not obtain a stable solution for Reynolds numbers higher than 
2 x lo5. Their calculated velocities and Reynolds stresses compared satisfactorily with 
the measurements of Brundett & Baines (1964, a t  Re = 8.3 x lo4) and of Gessner & 
Jones (1965, a t  Re = 1.5 x lo5). Since reservations have been expressed above about 
these data, this comparison is not entirely conclusive. 

I n  a study preliminary to the present one, Naot & Rodi (1982), from here on 
referred to as NR, simplified the Reynolds-stress-equation model of Launder et al. 
to  an algebraic-stress model and applied i t  to calculate the secondary motion in de- 
veloped duct and open-channel flows. Similarly to LY, NR neglected the convection 
and diffusion terms in the Reynolds-stress equation (assumption of local equilibrium) 
and calculated the primary stresses with the standard eddy-viscosity model. 
However, the _ _  terms involving __ secondary velocity gradients in the modelled transport 
equation for ui, u: and u2 u3 were not neglected but approximated by products of 
an isotropic eddy viscosity and the corresponding secondary velocity gradients (the 
actual expressions will be presented below). NR found that, when these terms were 
neglected, the secondary motion grew without bounds and no stable solution could 
be obtained. Arnal & Cousteix (1981) experienced the same problems with a very 
similar model when the empirical constants suggested by Launder et al. were used. 
Rather than including the secondary-velocity-gradient terms, however, they brought 
about a realistic simulation of the secondary motion by changing one of the empirical 
constants, effectively reducing drastically the empirical constant c’ in (4). As in the 
case of the LY-model, the correct secondary motion was thereby achieved by tuning 
the constants and not by a realistic simulation of the physical processes. 

2.3.  Present contribution 
The importance of the secondary-velocity gradients in the Reynolds-stress ~ equations 
and also in tJhe simplified algebraic stress relations, particularly for u2 u3, has been 
highlighted in the previous section. These gradients have been neglected in almost 
all previous calculations of the secondary motion in non-circular straight ducts, and 
this has been compensated for by tuning the empirical model constants in such a way 
that the actual driving term ui - ui was much too small. Naot & Rodi accounted for 
these gradients in their model in an approximate way, which is, however, not entirely 
consistent with the treatment of the primary- velocity-gradient terms. One of the 
main objectives of this study is to extend the NR-model by treating the secondary- 
velocity-gradient terms exactly in the same way as the primary-gradient ones and 

_ _  
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to examine quantitatively the influence of the secondary velocity gradients in the 
model. As in the NR-model, algebraic expressions are derived from the Reynolds-stress 
equations of Launder et al. by invoking the local equilibrium assumption. A second 
objective of this study is to  subject the resulting algebraic stress model to a wider 
testing as was done by NR with their model, and to directly compare calculations 
obtained with the present and the NR-model. Accordingly, both models are applied 
to developing and fully developed flow in a square duct and to the fully developed 
flow in a partially roughened rectangular channel studied experimentally by Hinzc 
(1973). Several variations to the model are also tested, such as an algebraic stress 
treatment of the primary shear stresses u1 u2 and u1 u, and different wall corrections 
to the pressurestrain model, and, besides direct comparisons of calculated streamwise 
and secondary velocities and Reynolds stresses with experiments, a comparison of 
the secondary- and primary-velocity-gradient terms is also presented. It should be 
mentioned here that the present algebraic stress model was used for calculating 
several test cases for the Stanford Conference on Complex Turbulent Flows (see Kline, 
Cantwell & Lilley 1982). 

__ __ 

3. Mathematical model 
3.1. Mean-$ow equations 

The three-dimensional equations governing the distribution of the mean velocity 
components in straight ducts may be expressed as follows : 

continuity equation au, au, au, 
ax, ax, ax, --+-+- = 0 ;  

streamwise (or longitudinal) momentum equation 

momentum equations governing the secondary velocities U ,  and U, 

The symbols are defined in figure 4. The streamwise turbulent fluxes of momentum 
have been neglected, and the pressure gradient aP/ax, originally appearing in (6) has 
been replaced by the cross-sectional average pressure gradient dP/dx,. These 
boundary-layer approximations make the equations parabolic in the streamwise 
direction ; physically this means that downstream events cannot influence the flow 
upstream. The parabolic equations are amenable to numerical forward-marching 
solution procedures which are particularly economic. The viscous terms are formally 
retained in the calculation, but they are of no importance because the equations are 
not integrated in thc viscous sublayer. Rather this is bridged by empirical wall 
functions which will be introduced below. 

In $3.2 a turbulence model is introduced €or determining the Reynolds stresses 2, 
u:, u1 u,, u1 u3 and u, u3 appearing in the momentum equations. Special attention is 
given to the modelling of the stresses ui, u: and u2u3 appearing in the equations 
governing the secondary motion. 

- _ _ _ _  __ 
_ _  ___ 
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3.2. Turbulence model 
The derivation of the turbulence model __ starts from the modelled transport equation 
for the Reynolds-stress component uiuj given by Launder et al. (1975). When 
convection and diffusion of the ___ Reynolds stresses are neglected (assumption of local 
equilibrium), this equation for ui ui reduces to 

-av a u .  0 = -utu ----u.u" -&*e 
axl 3 axl 

L I A -  ej = production dissipation 

- 
pressure-strain or redistribution 

where 

~ 

P is the production of turbulent kinetic energy k = iuiut. According to (9), the 
production of ui uj by the interaction of stresses and mean-velocity gradients is 
balanced by viscous dissipation as well as by an interaction betwcen fluctuating 
pressure and fluctuating strain rate (pressurestrain term) which tends to make 
turbulence more isotropic. Some calculations were carried out with a model in which 
convection and diffusion of uiui were not neglected altogether but related to 
convection and diffusion of the turbulent kinetic energy k according to a proposal 
by Rodi (1976) (zero on the left-hand side of (9) was replaced by uiuj/k(P-e)). The 
results obtained with this model were not significantly different from those of the 
present model, which assumes local equilibrium. 

The expression for the pressure-strain term is model 1 of Launder et al. The 
surface-proximity effect on the turbulent stresses is accounted for in this model by 
making the empirical constants functions of a dimensionless distance from the wall : 

__ 

__ 

__ 

= O.7636-O0.06f, 7 = 0.182, p =  O.1O91+0.O6ff, c1 = 1.5-0.50f, (11) 

where f is a function of the dimensionless wall distance to be introduced shortly, 
which has a value of unity in the near-wall region and of zero remote from walls. The 
values of the constants have been chosen such that, when f = 0, the model yields the 
correct Reynolds-stress components for the nearly homogeneous shear flow of 
Champagne, Harris & Corrsin (1970), and, whenf = 1 ,  the relative magnitude of the 
stress components agrees with a consensus of near-wall data. Hence the model 
predicts the correct separation between u: - ui, which, as was discussed above, is the 
driving term for the secondary motion. Here is one of the main differences from the 
Launder-Ying (LY) model, which used a different model approximation for the 
pressure-strain term not accounting for wall-proximity effects and yielding a far too 
small separation between the components 2 and 3 near walls. 

Constants different from those in ( 1 1 )  ran be chosen, which are also in agreement 
with the Champagne et al. free-shear-layer and the near-wall consensus data within 
experimental uncertainty, but  the use of these constants in the secondary-flow 
calculations produced only slightly different results. Hence, the original constants 
proposed by Launder et al. as given in (11) were retained. 

_ -  
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x3 

FIGURE 5.  Notation for calculating average distance of point P from surface. 

Launder et al. suggested the following linear relationship for the wall-damping 
function f: 

where L is the lengthscale of the turbulent motion a t  the point considered and ( y )  
is the average distance of this point from the surrounding surfaces as determined by 
the integral in (12) (see also figure 5) .  Naot & Rodi (1982) have shown that in the 
centre of a plane channel flow this damping function has a value of 0.8 of the value 
near the wall, suggesting strong wall influence even in the centre region. They argued 
that the wall-damping effect should decay faster with distance from the wall, and 
accordingly proposed the following quadratic relation : 

According to this, the value off a t  the centre of a plane channel is 0.3 times the value 
near the wall. Although the faster decay of the wall-damping function with distance 
from the wall appears more reasonable, i t  was not clear what the influence of this 
function on the actual calculation would be. Therefore calculations were carried out 
with both the linear and the quadratic wall-damping function, in order to examine 
the effect of the function. In  both relations, the lengthscale L is determined from 

The coefficient c$/K in this definition of L has been chosen so that f takes the value 
of unity in regions near plane walls where the logarithmic law of the wall prevails 
and the turbulence is in a state of local equilibrium (see $3.3 boundary conditions 
below). 

Reece (1976) did not use the concept of an average distance for simulating the 
influence of a wall on the normal stresses. Rather, for rectangular channel flow, he 
assumed that the normal stress in the xi direction is damped only by the wall normal 
to xi, but is not influenced by the wall parallel to xi. Accordingly, in calculating the 
function f to be used in (9) for the normal stresses in the cross-sectional plane, Reece 
used the distance from the wall normal to the stress considered. Some trial calcu- 
lations using this approach have been carried out, but produced little difference 
to results obtained with the average distance as described above. In any case, it seems 
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reasonable that right in the corner the presence of the other wall should also have 
an influence on the fluctuations. 

It is consistent with the local equilibrium assumption, already introduced into (9) 
to assume equality between production P and dissipation E of turbulent kinetic 
energy, a t  least as far as the stress-relation (9) is concerned. Accordingly, P in (9) 
is replaced by E to  yield 

When (15) is solved for the stress component appearing in the last bracketed term, 
there follows for the individual components 

q = -[-(a+p+cl- l ) - ( l -a)  2k E 

c1 6 3 

au, - 
ax2 

2k au2 l+-(l-a--/3-, 
c1 E ax, 

(a  +p+ c1 - 1)  +/?=---- u2 u, { (1  -a)  

(17)  u; = 

au, au, au3 - (l-a)--P-}--yk-] ax, ax, ax3 

(18) 
2k au3 

1 +- (1  -a-P)  -, 
C l f ?  8x3 

u; = - 

-{(1 - ~ t ) G - p G + y k } s ] ,  (19) 
ax3 

In  deriving (16)-(21) from (15), the only approximation made is the boundary-layer 
one, according to which the velocity gradients in the streamwise direction x1 can be 
neglected in developing flow. I n  developed flow, these gradients are of course exactly 
zero. It is important to  note that the gradients of the secondary velocities with respect 
to x, and x, have been retained in the algebraic stress relations (16)-(21); following 
Launder & Ying (LY), these gradients were neglected in most other models. Naot 
& RJodi (NR) approximated the secondary-velocity-gradient terms in the numerators 
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of (17)-(19) for ut, ui and u2u3 by the following eddy-viscosity expressions and 
neglected the secondary-velocity gradients in the denominator terms, making these 
unity : 

How the eddy viscosity is determined will be discussed shortly. 
The individual Reynolds-stress components are multiply coupled to each other by 

(16)-(21) and require in general an iterative procedure for their solution (or an even 
more expensive matrix inversion) a t  each downstream step of the forward-marching 
solution to be discussed below. Since this would make the calculation of developing 
flow very costly, and because a refined turbulence model is not so essential for 
calculating the primary shear stresses u1 u2 and u1 u,, the approach of existing models 
(e.g. LY and NR) is adopted to  determine these stresses with the aid of the isotropic 
eddy-viscosity hypothesis : 

(25) 

(26) 

~ __ 

~ -u1u2 = Vt- ,  au1 

-u1u3 = V t - ,  au1 
ax2 

ax3 

__ 

where the streamwise velocity gradients have again been neglected. The differences 
between this method of determining the primary shear stresses and a method using 
the algebraic expressions (20) and (21) will be examined for developed channel flow, 
for which case results could be obtained with both methods. The isotropic eddy 
viscosity in (25) and (26) is calculated as in the conventional k-E model by relating 
i t  to the turbulent kinetic energy k and the dissipation rate E :  

with cp = 0.09 as in the standard k-e model (see Rodi 1980). The quantities k and 
E ,  which also appear in the algebraic stress relations (16)-(21), are calculated as in the 
k-E model from the transport equations for these quantities : 

ak  a V t  ak a V t  ak ak ak 
ax, ax2 ,ax, ax, nkax, ax, ukax, ( ) -(--)+P-,, (28) 

a ("t a,) a ( V t  a € )  E l k  €2 k (29) 

u1-+u2-+u -=- -- + 

a€ a€ 
axl ax2 ax, ax, F,ax2 ax, r,ax3 

€ €2 
U 1 - + U 2 - + U 3 - = -  -- +- -- + c  -p-c - 

where 

is the production of k when the primary stresses are calculated from (25) and (26). 
When the primary stresses are determined from the algebraic stress relations (20) and 
(21), P is calculated from (10) with the stresses generated from (16)-(21) and only 
the terms with the streamwise velocity gradients neglected. cE1 and c,, are empirical 
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constants, which have been given the standard values 1.44 and 1.92 respectively (see 
Rodi 1980). For compatibility of the model with the logarithmic law of the wall and 
the local equilibrium conditions, it is necessary for crE to satisfy the constraint 

..2 

where K is the von Khrman constant, with a value of 0.42 adopted here. Following 
Noat & Rodi (1982), rIc = crE = 1.225 has been chosen, which deviates slightly from 
the values used in the extended k-E model (crk = 1.0, uE = 1.3), but yields better 
agreement with the experimental eddy-viscosity distribution in developed plane 
channel flow. 

Since the three normal stresses sum up to twice the turbulent kinetic energy k, the 
primary stress is not calculated from the algebraic expression (16) but from k, 3 
and z. Equations (5) - (8) ,  (17)-(19) and (25)-(30) form a closed set which needs to 
be solved simultaneously to determine the mean-velocity and Reynolds-stress 
components. How this was done will be discussed briefly in 53.3. 

3.3. Solution procedure and boundary conditions 
All the differential equations introduced above are parabolic in the streamwise 
direction, so that the solution cannot be influenced by downstream events and an 
efficient forward-marching solution procedure can be employed. This covers the 
calculation domain only once without iteration, starting from given conditions a t  an 
initial duct cross-section and requiring only two-dimensional storage of the dependent 
variables at the grid-points located in one cross-section. I n  particular, a modified 
version of the three-dimensional parabolic finite-difference procedure of Patankar & 
Spalding (1972) was employed. At the entry plane of the duct, a uniform distribution 
of all variables was prescribed. There the secondary velocities were set to zero and 
k and a were given such small values that the eddy viscosity vt was about 10 times 
the molecular viscosity v. Starting from these initial conditions, the step-by-step 
integration was carried out until developed flow was attained, that  is the profiles 
did not change any more in the streamwise direction. At each step, the momentum 
equations were solved first with a guessed pressure field (guessed pressure gradient 
for the strearnwise momentum equation (6)), where the prevailing upstream values 
were taken as guesses. The pressure and velocity fields were then corrected to satisfy 
the continuity equation ( 5 ) .  Subsequently, the Reynolds stresses were determined 
from the algebraic expressions (17)-( 19) and from the eddy-viscosity relations (25) 
and (26) (or from (20) and (21)) with known upstream values of vt (or the stresses 
appearing on the right-hand side of the equations). As a last step, the k- and a-equations 
(28) and (29) were solved. The error introduced by using upstream values of the 
turbulence quantities was found to be negligible when the forward step was less than 
2.5% of the channel hydraulic diameter, in which case iteration at each step was 
unnecessary. The solutions were obtained with a 20x20  grid distributed non- 
uniformly over the cross-sectional plane. Test calculations were also carried out with 
a 30 x 30 grid, which, for developed square-duct flow, yielded secondary velocities 
which differed by less than 5 %  from those obtained with the coarser grid usually 
employed. 

Boundary conditions need to  be prescribed a t  symmetry planes and a t  solid walls. 
At symmetry planes, the velocity component normal to the symmetry plane was 
equal to zero, while for all other quantities the gradients normal to this plane were 
taken as zero. 
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At solid walls, the velocity normal to the wall was set equal to zero a t  the wall; 
otherwise, the wall function approach outlined by Launder & Spalding (1974) was 
adopted, which in effect means that the boundary conditions are not specified right 
a t  the wall but a t  a point outside the viscous sublayer where the logarithmic law of 
the wall prevails and the turbulence can be assumed to be nearly in local equilibrium. 
For such a point with distance y from the wall, the streamwise velocity U, and the 
lateral velocity U, are related to the friction velocity U, (strictly, U, is the resultant 
friction velocity, but this is nearly identical with the friction velocity in the x1 

1 
direction) : 

U, = U,-ln(Ey+), (32) 
K 

1 
U, = U,-ln (Ey+) sine, 

K (33) 

where y+ = U, y/v, and 0 is the angle between the resultant wall shear stress and the 
xI direction. K is the von Karmdn constant (here 0.42) and E is a roughness parameter, 
which was given the value 9.0 for smooth walls. I n  one of the applications with 
partially rough walls, a different value is used as will be discussed below. Noat & Rodi 
(1982) employed a modified form of (33) in order to  account for the fact that  the 
near-wall gradients of the lateral velocity U, are considerably steeper than described 
by the logarithmic law (33). However, this modification did not produce noticeably 
different results and is therefore not used here. The boundary conditions for k and 
E are also specified a t  the first grid point where the logarithmic law of the wall prevails. 
With this and the assumption of local equilibrium there follows for a wall normal 
to x3 

where 
Fp = 1 +(z)2/(2)2. (35) 

For a wall normal to x2, x3 and x2 should be exchanged. Fp accounts for the fact 
that, in corner regions, the generation of turbulent energy Pgiven by (10) is influenced 
by the presence of both walls, while U, and y relate only to the wall nearest to the 
point in question. Hence Fp ensures that the production of kinetic energy is equal 
to the dissipation in the near-corner region; this would not be satisfied by the usual 
boundary condition (34), which uses Fp = 1. At the diagonal, Fp takes a value of 2, 
and hence (34) implies that the ratio k/ increases towards the corner. Gessner (1  982) 
reports on measurements by Eppich which show the opposite trend. This trend is in 
conflict with the notion of local equilibrium (the shear layers along both walls 
contribute to the production of k) and could only be explained by a fairly strong 
convective transport of k by the secondary motion from the centre region with lower 
k into the corner. Note that the usual boundary condition (Fp = 1 )  would imply that 
the production is equal to twice the dissipation a t  the corner. 

4. Results and discussion 
4.1. Square-duct jlow 

The development of the flow in a square duct was calculated for various Reynolds 
numbers, starting with uniform streamwise and zero secondary velocities a t  the inlet 
(xl = 0). 
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FIGURE 6. Flow development along axis of square duct. Data:  + , Melling (1975), Re = 42000; 0, 
Gessner &, Emery (1980), Re = 250000. Predictions: --, present model, quadratic f-function, 
Re = 50000; -0- ,  present model, quadraticf-function, Re = 250000; -, present model, linear 
f-function, Re = 250000; ---, model of Naot & Rodi (1982). 

Mean velocities 
The calculated development of the streamwise velocity along the duct axis is shown 

in figure 6 for Re = 50000 and 250000, where i t  is compared with the measurements 
of Melling (1975) and Gessner & Emery (1980) taken a t  Re = 42000 and 250000 
respectively. In  agreement with the data, the velocity a t  the axis can be seen to  rise 
first up to a maximum, and then to  decrease and level off to an asymptotic value. 
The two calculations with the present model (linear and quadratic wall-damping 
functions) differ only slightly, while the NR-model produces somewhat lower 
velocities. On the whole, all three models predict satisfactorily the flow development. 
The fairly strong Reynolds-number influence, that  is, the shift of the maximum from 
approximately 380, to 28U,, is also simulated well by the present model. 

Figures 7 ( a ) ,  ( b )  compare calculatedand measuredstreamwise velocity distributions 
along the wall and corner bisector of a square duct a t  six downstream stations. There 
is no appreciable difference between the calculations performed with the linear and 
the quadratic wall-damping function, so that only one calculation is presented. 
Calculations obtained with the NR-model show significant differences from those with 
the present model only in the near-wall region. The predictions are compared mainly 
with the data of Po (1975) and Gessner (see Gessner & Emery 1980). The two sets 
of data were obtained in the same experimental apparatus and under similar 
conditions, so that the difference between them is a good measure of the experimental 
scatter. Along the wall bisector, the agreement between the predictions and the data 
is good in the developing region up to 24D,, particularly when the data of Gessner 
are taken for comparison. Further downstream, there is a tendency of the models to 
overpredict the velocity somewhat, particularly in the centre region. The fully 
developed profile (obtained for the smaller Reynolds number of 83000) is compared 
with the measurements of Brundett & Baines (1964) a t  2600,. At this Reynolds 
number, the fully developed profile along the wall bisector can be seen to be in fairly 
good agreement with the data. 

All the models also predict the velocity along the corner bisector fairly well down 
to 400,. Further downstream, the present model tends to underpredict the velocity 
in the corner region, while the NR-model tends to overpredict it. Two contours of 
the primary velocity (UJUlmax = 0.8 and 0.9) as predicted by the present model, 
the NR-model and the isotropic k-E model a t  xJD, = 40 and 84 are compared with 
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FIGURE 7 ( a ,  b ) .  For caption see p. 208. 
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FIQURE 7 ( a ) .  Primary-velocity profiles along wall bisector, Re = 250000. Data: 0, Po (1975); 0,  
Gessner (in Gessner & Emery 1980); Re = 83000; a, Brundett & Baines (1964). Predictions: -, 
present model ; ---, NR-model. ( b )  Primary-velocity profiles along corner bisector; symbols as 
in (a) .  (c) Primary-velocity contours of ZJl/UImax = 0.8 and 0.9. Data: -.-, Gessner (in Kline 
et al. 1982). Predictions: -, present model; ---, NR-model; . . . . . . . ., isotropic k-s model. (Note 
that the scale is not the same in the x2 and z3 directions.) 

the experimental data of Gessner and coworkers (see Kline et al. 1982) in figure 7 ( c ) .  
At xJDh = 40 predictions obtained with the present model agree quite well with the 
data, but at zJDh = 84 they show too little bulging of the velocity contours towards 
the corners. At both locations the predictions obtained with the NR-model exhibit 
more bulging, and, in view of the uncertainties about the experimental contours 
discussed above (see figure 1 )  can be considered in fair agreement with the data. The 
reason for the differences lies in the predicted secondary motion as will be shown next. 
The isotropic k-e model predicts no secondary motion a t  all, and thus the primary 
velocity contours are almost circular. 

For x J D ,  = 40 and 84 figure 8 compares predicted and measured secondary-velocity 
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FIGURE 8. Secondary-velocity profiles. Data: 0 Gessner (in Gessner & Emery 1980); x , Melling 
(1975). Predictions as in figure 6; -...-, present model with primary shear stresses from algebraic 
stress relations (20) and (21). (a) Wall bisector; ( b )  corner bisector. 

distributions along the wall and corner bisectors. The data are due to Gessner, but 
a t  X I / &  = 40 the data of Melling (1975) have been included, even though they were 
taken a t  x J D ,  = 36.8. There is fairly good agreement between the two data sets on 
the profile along the wall bisector, and here the measured maximum velocity of 
Gessner increases only slightly from xl/Dh = 40 to 84. All the calculations show 
the opposite trend, that is U ,  decreases from xJD,  = 40 to 84. At both stations the 
present model underpredicts the secondary velocity, while the NR-model overpredicts 
the secondary velocity a t  x1/Dh = 40 but produces about the right level of U, at 84. 
There is much less agreement between Gessner’s and Melling’s measured profiles along 
the corner bisector, which indicates a quite different flow development. Gessner’s data 
a t  xl /Dh = 40 are significantly lower than Melling’s a t  xl /Dh = 36.8; the flow takes 
84 diameters to reach (and actually to exceed somewhat) the U ,  level observed much 
further upstream by Melling. The drastic increase in secondary velocity between 
xl/Dh = 40 and 84 appears somewhat anomalous; i t  may have to do with the 
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FIGURE 9. Separation of the secondary normal stresses, H, spread of corner-flow data 
(Perkins 1970). Predictions: see figures 6 and 8 for key to symbols. 

formation of a counter-rotating secondary eddy near the bottom wall, which is 
indicated by the negative U, velocity in figure 8 ( a ) ,  but there is some uncertainty 
about this experimental finding. The present model predictions are in agreement 
with Gessner’s data a t  xl /Dh = 40, but they fall below Melling’s data. At x J D h  = 84 
they are also significantly below Gessner’s data. On the other hand, the NR-model 
overpredicts the secondary velocity in the corner a t  both stations, by a rather large 
extent at the station x J D h  = 40. 

The use of a linear instead of a quadratic wall-damping function increases the 
secondary velocities along the wall bisector by 20-30 yo, but has little influence on 
the velocities along the corner bisector. Similarly, the calculation of the primary shear 
stresses ul u2 and u1 u3 from the algebraic expressions (20) and (21) instead of the 
eddy-viscosity formula (25) and (26) leads to an increase in secondary velocity of 
about 10 yo along the wall bisector but has no significant influence on the results along 
the corner bisector. It therefore appears that  no serious error is made when the 
eddy-viscosity approximations are used for the primary shear stresses. As the 
secondary motion convects high-momentum fluid from the centre towards the corner 
and low-momentum fluid from the wall towards the centre, underprediction of the 
secondary velocity causes the streamwise velocity to be too low near the corner and 
too high near the centre, while overprediction of the secondary motion has the 
opposite effect. This explains why the present model produces slightly too high 
primary velocities near the centre and too low values in the corner region, while the 
NR-model predicts too high values in the corner. The developed secondary velocity 
profiles are included in figure 3, which also shows the underprediction by the present 
model and the overprediction by the NR-model, although these trends are less 
pronounced in the developed state. 

The reasons for the different secondary motions predicted by the various models 
will now be examined. Figure 9 shows the predicted separation of the normal stresses, 
made dimensionless with the local friction velocity (g-z)/e, along the wall 
bisector for the model variants used. The reader is reminded that i t  is this quantity 
for which the LY-model yields values that are too small by a factor of 10. A consensus 

- __ 
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of near-wall data presented by Perkins (1970) is included in figure 9 for comparison. 
Except for the calculation using a linear near-wall damping function, all the models 
yield results that  lie within the range of the experimental data for most of the channel. 
There is some deviation near the channel centre, where the assumption of local 
equilibrium made in the model is least valid. The linear damping function can be seen 
to lead to a separation of the normal stresses which is too large. This is due to the 
fact that the influence of the wall does not decay sufficiently fast with distance from 
the wall, as was pointed out already by NR. This finding lends support to the use 
of a quadratic wall-damping function instead of a linear one. The larger separation 
of normal stresses is responsible for the higher secondary motion predicted with the 
latter. 

The present and the NR-model (both with quadratic f-function) predict similar 
separation of the normal stresses but considerably different secondary motion. The 
models differ in the treatment of the secondary-velocity gradients appearing in the 
algebraic stress expressions (17)-( 19). I n  the NR-model the secondary-velocity- 
gradient terms are approximated by (22)-(24), while the denominators in (17) and 
(18) are replaced by unity. The calculations show that the denominator varies 
between 0.97 and 1.03 in the equations for 3 and 3. It is therefore mainly the 
approximations (22)-(24) that  introduce the differences between the present and the 
NR-model. As will be shown later, the secondary-velocity-gradient terms in the 
equation are the ones of prime importance. I n  the corresponding approximation (24), 
the left-hand side may be represented by a non-isotropic eddy-viscosity relation, 
while the right-hand side is an isotropic one. When the left-hand side is written in 
eddy-viscosity form, introducing the Prandtl-Kolmogorov formula (27), the cp 
coefficients of the two contributions are given by 

Figure 10 shows the variation of cp2 calculated from the present model for fully 
developed flow. cP2 can be seen to range from 0.15 to 0.3, and this should be compared 
with the constant coefficient cP = 0.09 used on the right-hand side of (24) in the 
NR-model. As the secondary-velocity-gradient term in the u2 u3 expression acts to  
damp the secondary motion, the present model introducing effectively larger cP 
values leads to smaller secondary velocities. I n  the other extreme, when this term 
is neglected, the secondary motion is not sufficiently damped and keeps increasing 
during the solution process so that no stable solution can be reached, except when 
the production terms are significantly reduced. 

The relative magnitudes of the secondary to the primary velocity-gradient terms 
in the algebraic stress relations (17)-(19) for uz-ui and are compared for the 
present model in figure 11. Considering the difference in the normal stresses, the 
magnitudes of the secondary-gradient terms are less than half those of the primary 
ones over most of the flow domain. However, in the shear-stress relation, the terms 
involving secondary gradients are larger than those involving primary ones over 
two-thirds of the flow domain, and the secondary-gradient terms are particularly 
important in the midregion near the wall. The neglect of the secondary-gradient terms 
in the relation is therefore by no means justified, and, as experience has shown, 
must be compensated for by other measures. The calculations have shown that the 

__ 

- -  
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FIGURE 10. Contours of cp2 computed from (36). 

FIGURE 11. Contours of ratio of secondary to primary velocity-gradient terms in 
Reynolds-stress model (equations (17) and (18) for 2 and q; (19) for G). 

shear-stress term in the momentum equations for the secondary motion is generally 
of the same order as the normal-stress term, which is the reason for the predicted 
secondary motion to be very sensitive to the modelling of the shear-stress term. In  
order to give an impression of the relative magnitude of the terms in the momentum 
equations for the secondary motion, the variation of the individual terms in the U, 
equation along the first grid line (z,/a = 0.02) is plotted in figure 12. It is clear from 
this figure that the shear-stress term is in most regions larger than the normal-stress 
terms. I n  the corner region, which is most important for the secondary-flow 
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FIGURE 12. Balance of terms in z3 momentum equation along first gridline (ZJU = 0.02). 

mechanism, the shear-stress and normal-stress terms are of comparable magnitude 
and of opposite sign, and the convection terms are one order of magnitude smaller. 
The viscous terms turned out to be so small that they would not show up on the graph. 
These observations support the conclusions drawn in $2 on the dominant terms in 
the secondary-flow equations. Of course, here a momentum equation is considered 
which involves as one of the important terms the pressure gradient; hence a direct 
analogy with the vorticity equation (3) and the terms in i t  is not appropriate. 
However, the distribution of terms in figure 12 is qualitatively similar to that 
determined by Gessner & Jones (1965) for the terms in a momentum equation for 
the velocity component along a secondary-flow streamline. Too close a similarity 
should not be expected because figure 12 concerns the momentum equation for a 
velocity component with fixed direction. 

Turbulence quantities 
Figure 13 compares the predicted and measured development of the turbulent 

kinetic energy k along the wall and corner bisectors. I n  the central part of the channel, 
the agreement is fairly good, but there are certain discrepancies near the wall and 
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FIGURE 13. Turbulent-kinetic-energy profiles, Re = 250000. Data: 0, Po (1975); 0 ,  Gessner (in 
Gessner & Emery 1980). Predictions : -, present model ; present model with primary shear 
stresses from algebraic stress relations (20) and (21); ---, NR- model. (a) Wall bisector; (b) corner 
bisector. 

in the corners. I n  figure 13(a) the present and the NR-model can be seen to yield 
low values of k near the wall. Both models use a value of cp = 0.09 in the relation 
(34) that determines the k-value a t  the first grid point away from the wall. This 
standard value of cp is known to be too high as it takes no account of the damping 
of the normal fluctuations and the associated reduction in momentum transfer in the 
immediate vicinity of the wall (see Ljuboja & Rodi 1980). Figure 13(a) also shows 
that the model version that calculates the primary shear stresses directly from the 
algebraic expressions (20) and (21) yields the correct k near the wall. Through the 
wall-damping function in these expressions, cF is reduced in the vicinity of the wall ; 
this reduced value of cp is also used in the boundary condition (34) and leads to a 
higher k-value a t  the first grid point. 

I n  the corner, the predicted k-values are higher than the measured ones, except 
a t  the first grid point. At this point, the velocity gradient appearing in the production 
of k is forced tto be roughly in agreement with experimental findings as it follows from 
the log law (32) applied to this point. At the next grid point away from the wall, 
however, the velocity gradient is determined as part of the solution, and since this 
gradient is overpredicted to some extent (see figure 76)  too much kinetic energy is 
produced, which leads to the higher predicted peak values of k .  Furthermore, the 
measurements reported by Gessner (1982) indicate that the ratio of k to  U: decreases 
as the corner is approached while the local-equilibrium arguments leading to the 
condition (34) imply an increase of this ratio. 

Figure 14 compares the predicted and measured shear stress uluz along the wall 
~ 
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and corner bisectors. Along the latter, this shear stress is equal to the shear stress u1 us, 
for which the measurements are also included in figure 14(b) .  There is fairly good 
agreement along the wall bisector, but the distributions along the corner bisector 
(figure 146) show some discrepancies. The values a t  the first grid points appear to be 
supported by the experiments but the peak a t  the second grid point away from the 
wall is not. This is likely to be caused again by too high velocity gradients a t  this 
point as discussed before in connection with the k-profile. The use of an algebraic 
shear-stress relation instead of the eddy-viscosity expression can be seen to reduce 
this peak significantly. The reason is that  the normal fluctuations 2 appearing in 
the main production term in the u1 u2 equation are reduced significantly by the 
wall-damping function present in the algebraic relations. It therefore appears that 
the use of the algebraic relations (20) and (21) for the primary shear stresses has a 
beneficial effect in the corner region. However, it should be mentioned again that these 
relations could only be employed for the fully developed flow calculations without 
excessive computational cost. Further, the overall effect of using this more refined 
model on the mean-flow calculations has been shown to be only slight. 

Additional results of the square-duct calculations are presented in the proceedings 
of the Stanford Conference on Complex Turbulent Flows (Kline et al. 1982). 

__ 

- 

4.2. Flow in partially rough rectangular channel 
As a second test, calculations were carried out for the fully developed turbulent flow 
in a 5:  1 ratio rectangular channel studied experimentally by Hinze (1973). The lower 
of the long walls was roughened with elements having an average height of 0.004 m, 
but the central 22 yo of this wall was left smooth. The channel geometry is illustrated 
in figure 15. The Reynolds number based on the maximum velocity was 1.5 x lo5 in 
Hinze’s experiment. The measurements were carried out only a t  a cross-section 126 
hydraulic diameters from the inlet, and most quantities were measured only along 
the wall bisector (2, = 0). The change in roughness of the lower wall was found to 
produce considerably higher secondary motion than in channels with smooth walls, 
as can be seen in figure 15 from the fairly strong distortion of the velocity contours 
over the smooth part of the lower wall. Near the rough wall, higher turbulent stresses 
are generated in contrast to the region over the smooth part of the lower wall so that 
fairly strong gradients of stresses exist, including those of u;, ui and u2u,. These 
gradients, according to  the longitudinal vorticity equation (3), induce the fairly high 
secondary velocities. These velocities transport turbulent kinetic energy from the 
region of high generation above the rough-wall section to the region with low 
generation above the smooth centre part, but this is a consequence of the secondary 
motion and not the cause of this motion as implied by Hinze (1973). 

In  the calculations, the roughness entered through the log law (32) relating the 
velocity a t  the first grid point away from the wall with the friction velocity. For the 
rough wall in Hinze’s experiments, the logarithmic velocity law reads 

_ _  __ 

1 30y 
K 0.004’ 

U, = UT-ln- 

which corresponds to (32) when the roughness coefficient E has a value of 0.14. On 
all smooth-wall sections, the usual value of E = 9.0 was netained. The downstream 
integration of the equations was continued until developed flow had been reached, 
and the result,ing streamwise velocity contours are compared with the measurements 
of Hinze in figure 15. On the left half of the figure, calculations obtained with the 
NR-model are compared with the data and on the right half the calculations obtained 
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FIGURE 15. Contours of primary velocity U,/U, , , ,  in fully developed flow in partially rough 
rectangular channel. Data: ---, Hinze (1973). -, Present predictions. 
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FIQURE 16. Secondary velocity along wall bisector in partially rough channel. Data: 0, Hinze 
(1973). Predictions: ---, present model; ---, NR-model. 

with the present model. Both models can be seen to simulate the distortion of the 
velocity contours by the secondary motion quite well, and i t  is difficult to say which 
model yields the better agreement with the data. The present model underpredicts 
somewhat the displacement of the isovels in the vertical direction near the wall 
bisector, while the NR-model causes a somewhat too strong distortion. The reasons 
for these discrepancies can be found in the secondary motions, which are predicted 
too small by the present model and too large by the NR-model, as can be seen from 
figure 16, where the calculated secondary velocity is compared with measurements 
along the wall bisector. The present model leads to secondary velocities that  are about 
50 yo smaller than the measured ones, a trend that is consistent with the performance 
in the case of the square-duct flow. The NR-model predicts the correct secondary 
velocity near the lower wall, but then overpredicts this velocity in the upper two- 
thirds of the channel. Both models do not produce any negative (i.e. downward) 
velocity near the upper wall as observed in the experiments. Apparently, a second 
counter-rotating eddy existed in the experiments which could not be resolved with 
either of the models. However, there appears to be no reflection of this eddy and the 
downward secondary motion on the velocity contours near the upper wall. 

Figure 17 compares the calculated and measured k-profiles on the wall bisector. 
The strongly asymmetric behaviour of the k-profile is simulated well by both the 
present and the NR-model, with the minimum located near the upper wall where the 
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FIGURE 17. Turbulent shear stress and kinetic energy along wall bisector, for key to symbols see 
figure 16; -.--, present model with primary shear stress from algebraic stress relations (20) and 
(21). 

mean velocity U ,  has a maximum. Agreement between measurements and predictions 
with both models is reasonable in the centre portion near the upper wall, but near 
the lower wall the calculated k-values fall considerably below the measured ones. Here 
the assumption of local equilibrium introduced to  determine the k-value a t  the first 
grid point via relation (34) is certainly not valid because the fairly strong secondary 
motion convects k from the region above the rough walls to the centre portion with 
smooth wall, and in addition there may also be considerable diffusion of k towards 
the centre. I n  this case, the condition (34) applied at the first grid point is too crude 
and a more refined treatment is necessary. Figure 17 includes calculations obtained 
by determining the primary shear stresses from the algebraic relations (20) and (21) 
instead of the eddy-viscosity relations, which leads effectively to a lower value of c/. 
in (34), as explained in $4.1. Accordingly, somewhat higher k-values are obtained near 
the lower wall, but this model still ignores the transport from the region with high 
production. 

Figure 17 also compares calculated and measured shear-stress profiles along the 
wall bisector. The profile obtained with the present model is shifted somewhat 
towards the lower wall, and overshoots the measured profile in the lower half of the 
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duct. This is due to the fact that the velocity contours are not distorted sufficiently 
so that the velocity maximum is too close to the lower wall and, associated with this, 
the velocity gradient is too large near the lower wall. As the NR-model predicts a 
significantly larger secondary motion and hence also a larger distortion of the velocity 
contours, the velocity maximum is roughly a t  the measured position, and the 
shear-stress distribution is in much better agreement with measurements. I n  both 
models, the shear stress very near the lower wall is smaller than the measured one, 
and this is a consequence of the kinetic energy k and hence also the eddy viscosity 
vt being underpredicted near the lower wall for reasons explained above. It should 
be added that Hinze also measured the distribution of the dissipation rate c along 
the wall bisector and that the calculated €-distribution agrees very well with these 
measurements. 

5.  Conclusions 
The review of measurements on secondary flow in square ducts presented in this 

paper has shown that, in the equation for the streamwise vorticity, the terms 
involving the separation between the turbulent normal stresses ui - ui and the shear 
stress u2 u, are of the same order of magnitude and of opposite sign. They are much 
larger than all the other terms in the equation, and i t  is the difference between these 
terms that is of the same order of magnitude as the convection term and is the 
mechanism that drives the secondary motion. Hence both terms must be modelled 
accurately in a calculation method in order to describe realistically the secondary 
flow. The algebraic stress model of Launder & Ying (1973), on which most other 
models are based, has been found to yield a separation between the normal stresses 
ui - ui that  is much smaller than that experimentally observed. The Launder-Ying 
model originates from the stress-equation model of Hanjalid & Launder (1972), which 
already underpredicts the normal-stress separation because i t  does not account for 
any wall-proximity effects on the turbulent fluctuations. By changing one of the 
empirical constants, this separation was further reduced in the Launder-Ying model 
in order not to overpredict the secondary motion. The paper has shown that this 
measure was necessary because, in their algebraic stress model, the secondary-velocity 
gradients were neglected. These gradients increase the u2 u3 terms, thereby damping 
the secondary motion. These terms have been found to be very important in the 
algebraic expressions for as they are larger than the terms due to the primary 
velocity gradients in over two-thirds of the flow domain. 

An algebraic stress model has been introduced which is similar to the Launder-Ying 
model in that algebraic expressions for the Reynolds stresses ui, ui and u2u3 were 
derived by simplifying modelled transport equations for the Reynolds stresses. 
However, the primary shear stresses u1 u2 and u1 u, are determined from a standard 
eddy-viscosity relation. The differences are that the present model was derived from 
the stress-equation model of Launder et al. (1975), which involves a wall-proximity 
correction and leads to the correct separation between and 2 with the original 
constants, and that the secondary-velocity-gradient terms were retained in the 
algebraic expressions. Two variants of this model have also been considered, one being 
due to Naot & Rodi (1982) in which the secondary-velocity-gradient terms were 
approximated by an eddy-viscosity relation, - and the other using an algebraic stress 
model also for primary shear stresses= and u1 u, (although only for developed flow). 

The application of the various model versions to developing square-duct flow has 
shown that all versions predict fairly well the development of the streamwise velocity 
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along the duct axis and its dependence on the Reynolds number. On the other hand, 
the present model overpredicts somewhat the streamwise velocity in the duct centre 
and underpredicts it in the corner region, while the Naot-Rodi (NR) model leads to 
velocities in the corner region that are somewhat high. These discrepancies are due 
to the fact that the present model underpredicts the secondary motion while the 
NR-model overpredicts it. The comparison with secondary-velocity measurements 
is somewhat inconclusive because significant differences between various measure- 
ments exist that await an explanation. The differences between the present model and 
the NR-model stem from the different treatment of the secondary-velocity-gradient 
terms in the u, u3 expression. The results are very sensitive to this treatment because 
of the large relative magnitude of these terms. The development of the turbulent 
kinetic energy k is simulated quite well in most regions, but near the wall the predicted 
k is somewhat too low, and near the corner i t  is too high. The predicted shear stress 
is also too high in the corner region, and the use of algebraic expressions for the 
primary shear stresses uluz and u1 u3 improves the shear-stress predictions, but the 
overall effect on the calculations is slight. The model versions were also applied to 
the flow in a partially rough rectangular channel studied experimentally by Hinze 
(1973). I n  this case the secondary motion causes a strong distortion of the velocity 
contours, and this is simulated quite well by both the present model and the NR-model, 
the present one yielding a slightly too small distortion and the NR-model a slightly 
too large one. Again the respective underprediction and overprediction of the 
secondary motion by the two models is responsible for this. 

The present model has been found to simulate many features of the flow in 
non-circular straight ducts satisfactorily, but i t  has a tendency to underpredict the 
secondary motion. The NR-model yields predictions of similar quality but shows the 
opposite trend, namely to somewhat overpredict the secondary motion. A pragmatic 
approach of improving the accuracy of the secondary-flow prediction for practical 
calculations would be to  simply use a somewhat larger value for cfi in the approximation 
of the secondary-velocity-gradient terms used in the NR-model. However, further 
work is necessary in order to develop a model for simulating accurately the secondary 
velocities without any tuning of constants. 

__ 

__ ~ 

The work reported here was sponsored by the Deutsche Forschungsgemeinschaft 
via the Sonderforschungsbereich 80. The calculations were carried out on the 
UNIVAC 1108 computer of the University of Karlsruhe, using a modified version of 
program FLAIR of CHAM Ltd, London, which is based on the algorithm of Patankar 
& Spalding (1972). 
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